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Abstract

We study priority-based matching markets with public and private en-
dowments. We propose a novel partial order for comparing matching mech-
anisms in terms of their “fairness.” Using this order, we show that efficiency-
adjusted deferred acceptance (EADA) is justified-envy minimal in the class
of efficient mechanisms, while top trading cycles (TTC) and other popular
mechanisms are not. Our findings highlight EADA as an interesting alter-
native to TTC in the context of transplantation-organ markets. Restricting
attention to strategyproof mechanisms, we show that TTC is justified-envy
minimal, providing robustness to the result of Abdulkadiroğlu et al. (2020).

1 Introduction

Efficiency and fairness are two key desiderata in social choice. We study priority-
based matching, where these desiderata are, unfortunately, incompatible. Many
important indivisible resources are allocated based on agents’ preferences and pri-
orities, including school seats, public housing, and organs for transplantation. Pri-
orities typically represent the precedence of agents’ claim to each good which re-
flect a public policy choice. Violations of priorities are, thus, a deviation from the
stated precedence order, which may be considered unethical or unfair, potentially
justifying complaints or lawsuits.1

∗For helpful discussions and suggestions, we thank Samson Alva, Lars Ehlers, Rustamdjan
Hakimov, Onur Kesten, Marek Pycia, Alex Rees-Jones, Assaf Romm, Al Roth, Larry Samuel-
son, Jan Christoph Schlegel, Chloe Tergiman, Qian Zhang, and, especially, Arda Gitmez. This
research is based in part on Kwon’s master’s thesis (Kwon, 2018). Shorrer was supported by the
United States—Israel Binational Science Foundation (BSF) grant 2016015.
†Declarations of interest: none.
1See Ehlers and Morrill (2019) and references therein.
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Motivated by school choice, Abdulkadiroğlu and Sönmez (2003) study priority-
based matching with public endowment. They show that each desideratum can
be achieved by a strategyproof mechanism—another important desideratum when
agents’ preferences are unknown.2 Furthermore, they point to two strategyproof
mechanisms: the efficient top trading cycles (TTC) mechanism, and the fair de-
ferred acceptance (DA) mechanism. Kesten (2010) suggests a third mechanism,
the efficiency adjusted deferred acceptance (EADA) mechanism. These mecha-
nisms became focal in the large literature that followed.

Balinski and Sönmez (1999) show that, like all other fair mechanisms, the
matching achieved by DA is not necessarily Pareto efficient. However, they show
that it is constrained efficient in the sense that any matching that Pareto dominates
it is not fair. While, logically, this statement defines a set, it turns out that the
outcome of DA is the only member of this set.3 In other words, the Pareto-frontier
of fair matchings consists only of the outcome of DA. More simply, the outcome
of DA Pareto dominates any fair matching.

In this paper, our goal is to address the dual question. We propose two partial
“fairness” orders over mechanisms (described below). This allows us, given a col-
lection of mechanisms, to ask which ones are closest to being fair? That is, which
ones are justified-envy minimal? We are especially interested in the collection of
Pareto-efficient mechanisms. Considering this class of mechanisms is appropriate
in environments where agents cannot misrepresent their preferences. This is the
case, for example, when preferences depend on observable characteristics (as is
often the case for when medical resources, such as organs for transplantation, are
allocated).4

2We refer to a mechanism as strategyproof if agents have a weakly dominant strategy of
reporting their preferences truthfully.

3This may not be the case when objects’ priorities are not strict (Erdil and Ergin, 2008).
4For example, in the context of liver exchange, Ergin et al. (2018) assume that preferences

over potential grafts are public information “[s]ince it purely depends on observable donor char-
acteristics and determined based on agreed-upon medical criteria ... ” Similarly, in the context of
kidney exchange, Ashlagi and Roth (2014) report that “during the initial startup period, atten-
tion to the incentives of patients and their surgeons to reveal information was important. But as
infrastructure has developed, the information contained in blood tests has come to be conducted
and reported in a more standard manner (sometimes at a centralized testing facility), reducing
some of the choice about what information to report and with what accuracy. So some strategic
issues have become less important over time (and indeed current practice does not deal with the
provision of information that derives from blood tests as an incentive issue).”
There is some evidence that transplantation centers engage in strategic behavior, e.g. by con-

ducting easily arranged exchanges internally (Ashlagi and Roth, 2014) or choosing treatment
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In addition to the full class of Pareto-efficient mechanisms, we also consider the
subclass of strategyproof Pareto-efficient mechanisms. Focusing on this subclass is
appropriate in environments like centralized school-choice where strategic agents
report their preferences. In both cases we allow for both public and private endow-
ments. This generality is crucial for applications such as organ exchange (Roth
et al., 2004), house allocation (Abdulkadiroğlu and Sönmez, 1999), and teacher
assignment subject to tenure (Pereyra, 2013; Combe et al., 2018; Gonczarowski
et al., 2019).

Market clearing algorithms that respects private endowments may prove useful
in markets where a centralized marketplace does not exist yet, but where there is
a potential for such marketplace to be beneficial. For example, the human-plasma
market has a similar market structure to that of the market for transplantation
kidneys.5 Plasma has a variety of medical uses, among them is the use of recov-
ered patients’ plasma for post-exposure prophylaxis and the treatment of several
infectious diseases (examples include SARS-CoV, MERS, and Ebola. See Bloch
et al., 2020).

We propose two partial “fairness” orders over mechanisms. The first partial
order is novel to this work and compares the set of justified-envy triplets (with
respect to set inclusion). We say that (i, j, s) is a justified-envy triplet when
student i has justified envy towards student j at school s (we provide a formal
treatment in Section 2). The second partial order compares jusitified-envy pairs;
it has been used in previous papers (e.g. Abdulkadiroğlu et al., 2020). We say
that (i, s) is a justified-envy pair if there exists a student j such that (i, j, s) is a
justified-envy triplet.

Using both partial orders, we show that (1) EADA is maximally fair (justified-
envy minimal) in the class of Pareto-efficient mechanisms. And, (2) in one-to-one
matching markets, TTC is maximally fair (justified-envy minimal) in the class of

protocols that improve their patients’ priority (Varshney et al., 2020). Our notion of strate-
gyproofness does not consider such behaviors. It may be possible to address these issues sep-
arately using the fact that transplantation centers are repeat players (Ashlagi and Roth, 2014;
Liu, 2020).

5Since human plasma contains antibodies against other blood types, in this market the lattice
of blood-type compatibility is flipped, with O-patients being easy to match and AB-patients being
the hardest. Here, too, there are consideration regarding other aspects including the presence of
HLA antibodies (see Bloch et al., 2020, and references therein). We are grateful to Assaf Romm
and Tayfun Sönmez for drawing our attention to this market.
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All (individually rational) mechanisms

ΦFair ΦSP ΦPE

DA : uniquely constrained efficient in ΦFair (and ΦFair ∩ ΦSP )

TTC

justified-envy minimal mechanisms in ΦPE ∩ ΦSP
(in one-to-one matching markets)

EADA

justified-envy minimal mechanisms in ΦPE

Figure 1: The figure summarizes our main results. The rectangle represents the
space of all mechanisms (or all individually rational mechanisms). ΦFair, ΦSP ,
and ΦPE are the collection of fair, strategyproof, and Pareto-efficient mechanisms,
respectively. Justified-envy minimal mechanisms in ΦPE are not strategyproof
(Proposition 3), and include EADA (Theorem 2). However, this collection is not a
singleton (Proposition 2). TTC is justified-envy minimal in ΦPE ∩ ΦSP in one-to-
one matching markets (Theorem 3), but may not be the unique mechanism with
this property (Abdulkadiroğlu et al., 2020). The rest of the relations follow from
Abdulkadiroğlu and Sönmez (2003).

Pareto-efficient and strategyproof mechanisms.6 We also show that TTC, and all
other strategyproof mechanisms, is not justified-envy minimal in the unrestricted
class of Pareto-efficient mechanisms. Both EADA and TTC are individually ratio-
nal, which is crucial in the presence of private endowments. Figure 1 summarizes
these results.

While EADA is justified-envy minimal in the class of Pareto-efficient mecha-
nisms with respect to both orders, other popular Pareto-efficient mechanisms such
as the immediate acceptance (Boston) mechanism, serial dictatorship (SD), TTC,

6This second result has been established by Abdulkadiroğlu et al. (2020) with respect to
justified-envy pairs for the case of public endowment.
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DA followed by TTC (DA+TTC), and variations of TTC, such as Clinch and
Trade (Morrill, 2015), and Equitable TTC (Hakimov and Kesten, 2018) are not
justified-envy minimal in this class with respect to neither order. Our finding,
thus, formalizes the implicit intuition in Morrill (2015) that EADA is more fair
relative to other Pareto-efficient mechanisms. Morrill (2015) suggests that if a pol-
icymaker “values efficiency first, fairness second, and strategyproofness third, then
she should run the efficiency-adjusted deferred acceptance algorithm.”7

Combined with our negative results on TTC, our findings present EADA as an
interesting alternative to TTC in contexts such as transplantation-organ markets:
insofar as priorities reflect the policymaker’s goals,8 EADA results in allocations
that are maximally consistent with these goals in the class of Pareto-efficient mech-
anisms.

We are not aware of previous papers that suggested using EADA in the pres-
ence of private endowments. Roth et al. (2004) were the first to propose the use
of TTC for organ exchanges. Due to the prominence of this application, and since
we have shown that EADA is justified-envy minimal among Pareto-efficient mech-
anisms while TTC is not, in Section 7 we compare the two mechanisms in another
important dimension: the number of transplantations that they generate. We find
that the mechanisms are not comparable in this dimension: EADA can generate
more or fewer transplantations than TTC, depending on the market conditions.9

Our paper directly relates to Abdulkadiroğlu et al. (2020). They shows that in
one-to-one markets with public endowment TTC is justified-envy minimal in the
class of strategyproof and Pareto-efficient mechanisms with respect to justified-
envy pairs,10 and provide supporting empirical evidence from the school-choice
context. We provide robustness to their results by showing that they also hold

7Other justifications for EADA are provided in Doğan and Yenmez (2017), Tang and Zhang
(2020), Troyan et al. (2020), Ehlers and Morrill (2019), Dur et al. (2019) and Doğan and Ehlers
(2020b).

8In transplantation-organ markets in the Netherlands, organ-recipients with the smallest
chance of finding another compatible donor in the pool are ranked higher (Keizer et al., 2005).
In the United States, the priority for deceased-donor organs is based on a points system with
certain organs using different formulae (Israni et al., 2014).

9Afacan and Dur (forthcoming) and Afacan et al. (2020) study assignemnt maximization in
different settings.

10This partial order is also used in Tang and Zhang (2020) to derive the notion of weak
stability, self-constrained efficiency, and self-constrained optimality, and in Combe et al. (2018)
to compare teacher assignments.
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with respect to justified-envy triplets and in the presence of private endowments.11

Our findings contribute an explanation as to why this mechanism became focal in
the literature.12

The recent study of Doğan and Ehlers (2020b) considers a wide array of orders
and shows that EADA is justified-envy minimal with respect to some (including
the partial order based on pairs), but not with respect to others. Abdulkadiroğlu
and Grigoryan (2020) focus on identifying justified-envy-minimal Pareto-efficient
allocations in the presence of coarse priorities.

This paper is related to the large and growing literature on matching theory
and its applications in market design (see Roth, 2018). While we believe our ideas
may prove useful in many real-life market (especially the idea of using EADA with
private endowments), we wish to highlight that we study the properties of certain
mechanisms, but not whether they are appropriate for any particular market. We
leave for future studies the challenge of assessing the fit of these mechanisms as
part of a comprehensive market design solution in specific markets.

2 Model

2.1 Definitions and Notation

An allocation problem is a sextuple P ≡ (I, S, q, o, P,�), where I = {i1, i2, . . . , in}
is a finite set of agents, S = {s1, s2, . . . , sm} is a finite set of objects, q = (qs)s∈S is
a vector of object capacities with qs ∈ N for all s ∈ S.

P = (Pi)i∈I is a profile of strict agent preferences over objects and being unas-
signed (i.e., each Pi is a complete, transitive, and irreflexive relation over S ∪ {i},
where i represents being unassigned), and �= (�s)s∈S is a vector of strict object
priorities (complete, transitive, and irreflexive relations over agents). Denote by
Ri the at-least-as-good-as relation associated with Pi.

Each object may be part of the private endowment of a single agent i ∈ I (we
assume that privately owned objects are distinct). If an object does not belong
to any private endowment, we say that it is in the public endowment or publicly
owned. Formally, an ownership structure o is a function from S to I ∪{∅} where ∅

11The contemporaneous study of Doğan and Ehlers (2020a) provides a general result that nest
the result of Abdulkadiroğlu et al. (2020) as well as ours.

12Other justifications for TTC are provided in Ma (1994); Abdulkadiroğlu and Sönmez (1999);
Pápai (2000); Chen and Sönmez (2002); Pycia and Ünver (2017); Dur (2012); and Morrill (2015).
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represents public ownership. The priorities of privately owned objects must respect
the ownership structure—i.e., they are restricted to rank the owner first—but the
policymaker is free to pre-specify the rest of the priorities. The (pure) public
endowment case corresponds to the special case of our model where o(·) ≡ ∅.

A matching µ for given allocation problem P is a function from I to S ∪ I such
that 1) |µ−1(s)| ≤ qs for each s ∈ S, and 2) µ(i) /∈ S ⇒ µ(i) = i for each i ∈ I. A
mechanism is a function that maps each allocation problem to a matching for this
allocation problem.

Given an allocation problem, matching µ Pareto dominates matching µ′ if
µ(i)Riµ

′(i) for all i ∈ I and µ(i)Piµ
′(i) for some i ∈ I. Equivalently, for any

profile, u, of utility functions that agree with P (and any profile of positive Pareto
weights, λ),

∑
i λiui(µ(i)) >

∑
i λiui(µ

′(i)). A matching is Pareto efficient if no
matching Pareto dominates it. A mechanism is Pareto efficient if it selects a
Pareto-efficient matching in every allocation problem. The mechanism ϕ Pareto
dominates ϕ′ if ϕ(P)(i)Riϕ

′(P)(i) for all P and i ∈ I, and ϕ(P)(i)Piϕ′(P)(i) for
some P and i ∈ I. Given a collection of mechanisms, Φ, we say that the mechanism
ϕ ∈ Φ is constrained efficient in Φ if there is no mechanism ϕ′ ∈ Φ that Pareto
dominates ϕ.

Given matching µ, we say agent i has justified envy towards agent j at object s if
µ(j) = s, sPiµ(i) and i �s j.13 We call the triplet (i, j, s) a t-justified envy and the
pair (i, s) a p-justified envy (of note, p-justified envy ignores the quantity and the
identities of the envied agents). A matching is fair if it induces no t-justified envy
(and thus no p-justified envy). A mechanism is fair if it selects a fair matching for
all allocation problems.

A matching µ is individually rational if µ(i)Rii and µ(i)Ris for all s ∈ o−1(i),
for all i ∈ I. A mechanism is individually rational if it selects an individually
rational matching in every allocation problem.

Lastly, a mechanism ϕ is strategyproof if agents cannot benefit from misrepre-
senting their preferences. Formally, for each P = (I, S, q, o, P,�), for each agent
i ∈ I, and any P ′ = (I, S, q, o, P ′i , P−i,�), we have ϕ(P)(i)Riϕ(P ′)(i).14

13For a definition of justified envy in more general domains see Romm et al. (2020).
14Our notion of strategy does not allow agents to misrepresent information about their private

endowment (e.g., by hiding the existence of objects they own). Cf. Ergin et al. (2018).
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2.1.1 Discussion: Public vs. Private Endowments

Private ownership introduces some distinct considerations to the problem of object
allocation. For example, how to address conflicts between priorities and owner-
ship. Additionally, although efficiency is independent of the ownership structure,
individual rationality is more restrictive in the presence of private endowments,
and so is fairness (for a comprehensive discussion, see Haeringer (2018), Chapter
11).

We use a simple, but useful and reasonable method that allows us to accom-
modate the private ownership structure without creating additional complexities.
As mentioned above, we make the priority structure reflect the private ownership
by requiring privately owned objects to rank their owners first. This method has a
number of benefits. First, mechanisms that are introduced in purely public endow-
ments, such as EADA, can be naturally implemented even in the presence of the
private ownership. As a consequence, EADA can be used in the transplantation-
organ markets (e.g., kidney exchange problems). Second, we can invoke several
known results on these mechanisms that were proved only for the case of public
endowment. Third, we may maintain the definition of properties, such as fairness,
as defined in public endowments. Note that the definition of fairness in the previ-
ous section uses only priorities, not ownership. However, since the owner has top
priorities, if a mechanism is fair in our definition, it never makes agents envious of
someone that occupy their private endowments, essentially respecting ownership.

It is worth noting that, the ownership structure puts a restrictions on �. Thus,
requirements that must hold over all possible priority profiles (such as strate-
gyproofness of a matching algorithm or the fairness comparisons described below)
are simpler to satisfy, as fewer conditions must hold.

2.2 Justified-Envy Minimality

Given an allocation problem P and a matching µ, let JEµ(P) be the set of t-
justified envies at µ. When there is no risk of confusion, we suppress the de-
pendence on P . For a fixed allocation problem, the matching µ has weakly less
t-justified envy than µ′ if JEµ ⊆ JEµ′ . Furthermore, µ has less t-justified envy
than µ′ if JEµ ( JEµ′ . Given an allocation problem and a set of matchings,M,
we say that the matching µ ∈ M is t-justified-envy minimal in M if there is no
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µ′ ∈M with less t-justified envy than µ.
The mechanism ϕ has weakly less t-justified envy than mechanism ϕ′ if for

all P , JEϕ(P)(P) ⊆ JEϕ′(P)(P). The mechanism ϕ has less t-justified envy than
mechanism ϕ′ if JEϕ(P)(P) ⊆ JEϕ′(P)(P) for all P , and JEϕ(P)(P) ( JEϕ′(P)(P)
for some P . Given a collection of mechanisms, Φ, we say that the mechanism
ϕ ∈ Φ is t-justified-envy minimal in Φ if there is no ϕ′ ∈ Φ which has less t-
justified envy than ϕ. The definitions for p-justified envy are analogous, using the
sets of p-justified envies, ĴE

µ
(P).

2.2.1 Interpretation

The partial orders underlying our definitions of p- and t-justified-envy minimality
are somewhat coarse. There are many other reasonable, finer criteria. One broad
class is captured by justified-envy aggregators. A t-justified-envy aggregator is
given by a vector of positive numbers λ =

(
λ(i,j,s)

)
(i,j,s)∈I×I×S. We say that the

matching µ has less λ-t-justified envy than the matching µ′ if
∑

(i,j,s)∈JEµ λ(i,j,s) <∑
(i,j,s)∈JEµ′ λ(i,j,s). The definitions for p-justified envy are analogous. Specific

aggregators may be more appropriate in particular applications, depending on the
setting. For example, it may be appropriate to assign higher weights to pairs or
triplets that involve a member of an underrepresented minority or ones that involve
highly sought-after schools.

Theorem 1 establishes that a matching is (p-) t-justified envy minimal if and
only if it is minimal with respect to some (p-) t-justified-envy aggregator. It implies
that the partial orders “less t-justified envy” and “less p-justified envy” coincide with
the intersection of the orderings induced by all of the respective justified-envy
aggregators (Corollary 1). This relation resembles the relation between Pareto
efficiency and the maximization of weighted utility aggregators or the relation
between expected utility maximization and first order stochastic dominance. Thus,
in the same fashion, our results can be interpreted as a robust recommendation.

Theorem 1. For any allocation problem and a set of matchings,M, µ ∈M is (p-)
t-justified-envy minimal if and only if there exists a (p-) t-justified-envy aggregator
such that µ is λ-t-justified-envy (λ-p-justified-envy) minimal.

Proof. Assume that µ is not t-justified-envy minimal in M. Then, there exists
µ′ ∈ M such that JEµ′ ( JEµ, and so

∑
(i,j,s)∈JEµ′ λ(i,j,s) <

∑
(i,j,s)∈JEµ λ(i,j,s)
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since the right-hand side summation is over a superset of elements and all entries
of λ are positive. Thus, µ is not λ-t-justified-envy minimal inM.

Conversely, let µ be t-justified-envy minimal in M. Then, for any µ′ ∈ M,
we have either JEµ′ = JEµ or JEµ′ \ JEµ 6= ∅. Let ε > 0 be a sufficiently
small number, and consider the t-justified-envy aggregator given by the vector λ
such that λ(i,j,s) = ε for each (i, j, s) ∈ JEµ and λ(i,j,s) = 1/ε otherwise. This
aggregator assigns to µ a weakly lower value than to any other µ′ ∈ M (strictly
lower if JEµ′ 6= JEµ). The proof for p-justified envy is completely analogous.

Corollary 1. For any pair of matchings µ and µ′:

1. JEµ ( JEµ′ if and only if µ has less λ-t-justified envy than µ′ for any t-
justified-envy aggregator (given by λ).

2. ĴE
µ
( ĴE

µ′

if and only if µ has less λ-p-justified envy than µ′ for any
p-justified-envy aggregator (given by λ).

Our approach presents a direction for systematically extending the partial or-
ders we use (which rely on set inclusion). For example, in specific contexts, one
may be willing to assume that if 1 �s 2 �s 3, then λ(1,2,s) < λ(1,3,s). The partial
order resulting from the intersection of all aggregators that satisfy this restriction
would deem {(1, 3, s)} as having more justified envy than {(1, 2, s)}. Continuing
the analogy to expected utility maximization, an additional assumption in that
domain can be that utility functions are concave, and the resulting extension is
second order stochastic dominance.

2.2.2 Independence of t- and p-Justified-Envy Minimality

Proposition 1. A matching can be t-justified-envy minimal and not p-justified-
envy minimal in a set of matchings, and vice versa.

Proof. Consider the following allocation problem: I = {1, 2, 3, 4}, S = {a, b, c},
qa = 2, qb = 1, qc = 1, all objects are public (o(·) ≡ ∅), and (P,�) as follows:

P1 P2 P3 P4 �a �b �c
a a a c 4 1 1
b b b a 1 2 2

c c c
... 2 3 3

1 2 3 3 4 4
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Let {µ1, µ2, µ3} be a set of matchings as follows:

1 2 3 4
µ1 b a a c
µ2 b a c a
µ3 c a b a

We have that JEµ1 = {(1, 2, a), (1, 3, a)}, JEµ2 = {(1, 2, a)}, and JEµ3 =

{(1, 2, a), (1, 3, b)}. Hence, ĴE
µ1

= ĴE
µ2

= {(1, a)} and ĴE
µ3

= {(1, a), (1, b)}.
Therefore, in the set {µ1, µ2}, both matchings are p-justified-envy minimal, while
only µ2 is t-justified-envy minimal. Similarly, in the set {µ1, µ3}, both matchings
are t-justified-envy minimal, while only µ1 is p-justified-envy minimal.

Corollary 2. The partial orders “less t-justified envy” and “less p-justified envy”
are independent.

In allocation problems where each object has capacity of one, the order based on
pairs extends the order based on triplets (i.e., makes more comparisons). Building
on the interpretation presented in the previous section, the partial order based
on pairs can be interpreted as imposing t-justified-envy aggregators the restriction
that λ(i,j,s) = λ(i,k,s) for any i, j, k ∈ I and any s ∈ S (this is possible since, in this
class of allocation problems, only one person can be envied in each school).

Lemma 1. In allocation problems where each object has capacity of one, for any set
of matchings M, if µ is p-justified-envy minimal in M, then it is t-justified-envy
minimal inM.

Proof. Toward contradiction, suppose that µ ∈ M is p-justified-envy minimal in
M but not t-justified-envy minimal. Then there exists µ′ ∈M with less t-justified
envy than µ.

We note that justified-envy pairs correspond to the first and third coordi-
nates of justified-envy triplets. Furthermore, since objects’ capacities are one, each
justified-envy pair appears in the set of justified-envy triplets only once. Therefore,
a matching that induces (weakly) less t-justified envy also induces (weakly) less
p-justified envy. This implies that µ′ has less p-justified envy than µ contradicting
p-justified-envy minimality of µ.

The following example shows that the converse of Lemma 1 does not hold.

11



Example. Consider the following allocation problem: I = {1, 2, 3, 4}, S = {a, b, c, d},
and each object has capacity of 1. The table below describes (P, �).

P1 P2 P3 P4 �a �b �c �d
a a b d 1 2

... 2
c b a b 3 4 4
... d

...
... 2 3

...
...

...
...

LetM = {µ1, µ2}, where µ1 and µ2 are as follows:

1 2 3 4
µ1 c d a b
µ2 c a b d

We have JEµ1 = {(1, 3, a), (2, 4, b)}, JEµ2 = {(1, 2, a)}, ĴE
µ1

= {(1, a), (2, b)},
and ĴE

µ2

= {(1, a)}. Therefore, both matchings are t-justified-envy minimal inM
while only µ2 is p-justified-envy minimal inM.

2.2.3 Discussion: Comparisons via Pairs and Triplets

While comparisons of p-justified envy appeared in multiple earlier papers, t-justified
envy is novel to this study. We believe that relying on justified-envy triplet is useful
in many contexts. Consider, for example, a public school district that tries to min-
imize “scandals.” The set of t-justified envies allows to tell apart complaints like “a
minority student was not accepted to school X while seven majority students with
substantially lower priority gained admission” from complaints like “a minority stu-
dent was not accepted to school X while one other minority student with slightly
lower priority gained admission.” By contrast, p-justified envy comparisons will
map both statements to “a minority student was not accepted to school X while
one or more other (majority or minority) students with lower (to some extent)
priority were accepted.” By Corollary 1, in such contexts, where weights are not
known, our criterion of t-justified-envy minimality is a robust notion.

Additionally, even in contexts where the researcher want to use p-justified envy
comparisons, justified-envy triplets can be used for further refinement. For exam-
ple, one may require that ties are broken based on the degree of justification of
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envy (e.g., how far below the envious agent the envied agent is ranked).15

3 A Fair, Strategyproof, and Constrained-Efficient
Mechanism

The DA algorithm was introduced by Gale and Shapley (1962). Abdulkadiroğlu
and Sönmez (2003) were the first to suggest it in the context of school-choice
(allocation problems with public endowment). DA identifies the matching to which
the following process converges: 1) each object s repeatedly rejects all but the best
ranked qs applicants according to �s, 2) agents repeatedly apply to the best object
that did not reject them, and 3) if agents apply to themselves, they stop applying
and remain unassigned.

Balinski and Sönmez (1999) show that the DA matching is not necessarily
Pareto efficient, but it Pareto dominates all other fair mechanisms.

Theorem (Balinski and Sönmez, 1999). For any allocation problem, the DA match-
ing Pareto dominates all other fair matchings.

Let ΦFair, ΦIR and ΦSP be the collection of fair, individually rational and strat-
egyproof mechanisms, respectively. The theorem allows us to say that DA is con-
strained efficient in the collection of all fair mechanisms. Since DA is justified-envy
free and non-wasteful, the restrictions imposed on � by the ownership structure
guarantee that it is individually rational. Roth (1982) and Dubins and Freedman
(1981) show that DA is strategyproof.

Corollary 3. DA is the unique constrained-efficient mechanism in ΦFair and in
ΦFair ∩ ΦIR ∩ ΦSP .

4 Efficient, Constrained-Justified-Envy-Minimal Mech-
anisms

Kesten (2010) introduces the EADA algorithm. Tang and Yu (2014) provide an
alternative algorithm (SEADA) that yields the same outcome. For brevity, we only
describe SEADA. We say that object s is underdemanded if it never rejects any
agent throughout the DA algorithm. The SEADA algorithm proceeds as follows:

15We thank an anonymous referee for suggesting this point.
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Round 0 Run the (round 0) DA algorithm.

Round k, k ≥ 1 For agents assigned to underdemanded objects or left unas-
signed in round k − 1 DA algorithm, finalize their assignments as round
k − 1 DA outcome. Remove these agents and underdemanded objects. Re-
run (round k) DA algorithm for the remaining agents and objects.

The algorithm terminates when all agents are removed from the allocation
problem, and the agents are assigned to the objects with which they are removed.
We call the mechanism that associates to every allocation problem the outcome of
the above algorithm EADA.16

Theorem (Kesten, 2010). EADA is Pareto efficient.

Remark. Kesten (2010) is motivated by school choice and therefore frames his
model in the context of public endowment. However, since efficiency is independent
of the ownership structure, his theorem applies also in the presence of private
endowments.

Theorem 2 provides a partial answer to the question raised at the beginning.
EADA is t-justified-envy and p-justified-envy minimal among all Pareto-efficient
mechanisms. In fact, the theorem shows something stronger; for any allocation
problem, no efficient matching creates less p- or t-justified envy than the matching
resulting from EADA.

Theorem 2. For any allocation problem, the EADA matching is t-justified-envy
(p-justified-envy) minimal in the set of Pareto-efficient matchings.

The proof is in Appendix A. Doğan and Ehlers (2020b) independently showed
that the EADA matching is p-justified-envy minimal in the set of Pareto-efficient
matchings. In Appendix B we show that, in that setting, the main result of Tang
and Zhang (2020) can be used to derive a simple proof that the EADA matching
is p-justified-envy minimal in the set of Pareto-efficient matchings (see also Doğan
and Ehlers, 2020b).

Since EADA Pareto dominates DA (Tang and Yu, 2014) and DA is individually
rational, we have the following:

16Both Kesten (2010) and Tang and Yu (2014) present a more general set of mechanisms, as
they first specify the set of consenting agents. In this paper, we assume that all agents consent,
as otherwise the mechanism is not Pareto efficient.
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Corollary 4. The EADA matching is t-justified-envy (p-justified-envy) minimal
in the set of individually rational and Pareto-efficient matchings.

We often highlight the special case of one-to-one problems where each agent
i owns a single, distinct object si, such that siPii. Allocation problems with
this structure map to real-life scenarios such as kidney exchange (with no public
endowment) if one assumes that patient-donor pairs do not have preference over
the identity of the recipient of the donor’s organ, except that they prefer that the
donor does not donate if the patient does not receive an acceptable organ—one that
is ranked higher than the directed donor’s organ. For simplicity, we label the subset
of these problems as special kidney-exchange problems. Proposition 2 shows that
EADA is not the unique justified-envy-minimal Pareto-efficient mechanism even in
this special case. This stands in contrast with DA being the unique constrained-
efficient mechanism among fair mechanisms.

Proposition 2. There exist special kidney-exchange problems where the set of
efficient matchings has multiple t- and p-justified-envy minimal matchings.

Proof. Let I = {1, 2, 3}, S = {a, b, c}, each object has capacity of 1, and (P,�) be
as follows:

P1 P2 P3 �a �b �c
b a a 1 3 2
a c b 2 1 3
c b c 3 2 1
1 2 3

The profile of priorities � is consistent with the ownership structure in which
a is in agent 1’s endowment, c is in agent 2’s endowment, and b is in agent 3’s
endowment (but it could have also reflected the policymakers’ priorities in the
purely public or mixed endowment case). For this allocation problem, EADA
yields µ1. Furthermore, µ1, µ2, and µ3 are all the Pareto-efficient matchings for
this allocation problem.

1 2 3
µ1 b c a
µ2 c a b
µ3 b a c

15



Note that neither of the Pareto-efficient matchings is fair; each of them gen-
erates a single t-justified envy, (2, 3, a), (1, 2, a), and (3, 1, b), respectively, and a
single p-justified envy, (2, a), (1, a), and (3, b), respectively.

To see that Proposition 2 implies that EADA is not the unique justified-envy-
minimal Pareto-efficient mechanism, consider any mechanism that coincides with
EADA except in some special-kidney-exchange problem with multiple t- and p-
justified-envy minimal efficient matchings, where it chooses another such matching.
Such mechanism is also t- and p-justified-envy minimal in ΦPE.

Given this result, it is natural to ask if there are other t-justified-envy (p-
justified-envy) minimal mechanisms in ΦPE that are also strategyproof. Proposi-
tion 3 says that this is impossible. Hence, finding t-justified-envy (p-justified-envy)
minimal mechanisms in the collection of Pareto-efficient and strategyproof mecha-
nisms is also of interest. Addressing this question is the focus of the next section.

Proposition 3. Any t-justified-envy (p-justified-envy) minimal mechanism in ΦPE

is not strategyproof, even restricting attention to special kidney-exchange problems.

The proof for the general case was provided in Proposition 1 of Kesten (2010).
In Appendix A we modify his proof to accommodate the restriction to special
kidney-exchange problems.

5 Efficient, Strategyproof, Constrained-Justified-
Envy-Minimal Mechanism

Below, we describe the TTC algorithm for object allocation, which was introduced
in the school-choice context by Abdulkadiroğlu and Sönmez (2003).

Step 0 For each object s, assign a counter cs and initialize it to cs = qs.

Step k, k ≥ 1 If cs = 0, remove object s. If agent i’s first-choice among options
that were not removed is herself, remove agent i, and leave her unassigned.
If there are no more agents, terminate. Each remaining agent points to
her first-choice among remaining objects. Each remaining object points to
its highest-priority remaining agent. A cycle consists of objects and agents
(s1, i1, s2, ..., sL, iL) where sl points to il, il points to sl+1(modL). Agents and
objects cannot be part of more than one cycle, and there must be at least
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one cycle. Every agent in a cycle is removed and assigned the object she
points to. For each object s in a cycle, set cs = cs− 1. Proceed to step k+1.

We call the mechanism that associates to every allocation problem the out-
come of the above algorithm TTC. Theorem 3 states that TTC is t-justified-envy
(p-justified-envy) minimal in the class of Pareto-efficient and strategyproof mech-
anisms in one-to-one matching markets.

Theorem 3. When each object has capacity of one, TTC is t-justified-envy (p-
justified-envy) minimal in ΦPE∩ΦSP . Furthermore, this holds even when restricting
attention to special kidney-exchange problems, or to the set of allocation problems
with priorities given by �.

Proof. The result for p-justified envy is proved by Abdulkadiroğlu et al. (2020).
While they consider the public endowment case, their result applies also with
general ownership structures under our assumption on priorities. The result for
t-justified envy then follows from Lemma 1.

Since TTC is strategyproof and has the mutual-best property (Dur, 2012; Mor-
rill, 2013), it is individually rational, and so we have the following corollary.

Corollary 5. When each object has capacity of one, TTC is t-justified-envy (p-
justified-envy) minimal in ΦPE ∩ ΦSP ∩ ΦIR. Furthermore, this holds even when
restricting attention to special kidney-exchange problems, or to the set of allocation
problems with priorities given by �.

6 Negative Results for Other Mechanisms

Morrill (2015) points out that TTC may perform unnecessary trades causing un-
necessary justified envy. He suggests three alternative mechanisms: Clinch and
Trade (C&T), Always Clinch and Trade (AC&T), and First Clinch and Trade
(FC&T). Hakimov and Kesten (2018) propose the Equitable TTC (ETTC) mech-
anism with the similar motivation. All four mechanisms are Pareto efficient and
they all coincide with TTC when objects’ capacities are one. Only C&T, FC&T,
and ETTC are strategyproof.17

17See Appendix B for details on the mechanisms discussed in this section.
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In addition to DA and TTC, Abdulkadiroğlu and Sönmez (2003) also intro-
duced the Boston (B) mechanism. A popular variant of this mechanism is known
as Adaptive Boston (AB). Both mechanisms are Pareto efficient, but they are
neither strategyproof nor individually rational (Mennle and Seuken, 2014; Dur,
2019).

Another category of mechanisms are ones that run variants of DA and then
Gale’s top trading cycles algorithm (Shapley and Scarf, 1974) with the resulting
matching as initial endowment. We call the variant that uses DA first, DA+TTC,
and the variant that uses object-proposing DA first, CPDA+TTC. These mecha-
nisms are Pareto efficient, but not strategyproof (Alva and Manjunath, 2019).

Abdulkadiroğlu et al. (2020) define the class of priority-adjusted TTC. Mecha-
nisms in this class are Pareto efficient and strategyproof. These mechanisms output
the outcome of TTC with respect to agents’ preferences and some “artificial” pri-
orities. The case where the artificial priorities coincide with the true priorities
corresponds to TTC. The case where all objects share the same artificial priorities
corresponds to SD. Of note, SD is not individually rational (Abdulkadiroğlu and
Sönmez, 1999).

None of the abovementioned mechanisms is t-justified-envy (p-justified-envy)
minimal in ΦPE even when restricting attention to special kidney-exchange prob-
lems.

Proposition 4. C&T, AC&T, FC&T, ETTC, DA+TTC, CPDA+TTC, B, AB,
and all priority-adjusted TTC are not t-justified-envy (p-justified-envy) minimal in
ΦPE even when restricting attention to special kidney-exchange problems.

According to Theorem 3, in one-to-one markets, TTC is t-justified-envy min-
imal in the class of Pareto-efficient and strategyproof mechanisms. However, we
show that if objects can have larger capacities this result no longer holds. Further-
more, none of the Pareto-efficient and strategyproof mechanisms discussed above
are t-justified-envy minimal. Since Proposition 1 shows that our two notions of
justified-envy minimality are independent in general, this result provides robust-
ness to the negative result of Abdulkadiroğlu et al. (2020) who show it with respect
to p-justified envy.

Proposition 5. Any priority-adjusted TTC, C&T, FC&T, and ETTC are not
t-justified-envy (p-justified-envy) minimal in ΦPE ∩ ΦSP ∩ ΦIR.
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C&T, AC&T, FC&T, and ETTC are all motivated by a desire to eliminate un-
necessary justified envy that TTC creates, and there are evidence that they achieve
this goal with respect to some measures (Morrill, 2015; Hakimov and Kesten, 2018).
However, these mechanisms may generate more t- and p-justified envy than TTC.

Proposition 6. C&T, AC&T, FC&T, and ETTC may induce less or more t-
justified envy (p-justified envy) than TTC.

7 Discussion

Our findings highlight EADA as an interesting alternative to TTC in the context
of tranplantation markets. We conclude by focusing on a key policy goal in kidney-
exchange markets: the number of transplantations.

We focus on special kidney-expchange problems. We assume that participants
are all incompatible with their directed donor (see, e.g., Sönmez et al., 2018), and
therefore a transplantation only occurs if they are assigned a kidney that they rank
higher than that of their directed donor (i.e., their private endowment). We then
compare the number transplantations resulting from TTC and EADA fixing the
policymaker’s priorities. The results are ambiguous, and thus trivially generalize
to the more general case of where the exchange also manages a queue (Roth et al.,
2004).18

Proposition 7. There exist special kidney-exchange problems in which DA and
EADA produce strictly more (fewer) transplantations than TTC.

Proof. To see that DA and EADA can generate more transplantations than TTC,
consider the following kidney-exchange problem. There are three agents and three
directed donor kidneys: objects with capacity 1, each agent owns a single object.
Let (P,�) as follows:

P1 P2 P3 �a �b �c
b a a 1 2 3
c c b 3 3 1
a b c 2 1 2
1 2 3

18A similar result for the case of pure public endowment follows from Afacan and Dur (forth-
coming).
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TTC selects µ1—a two-way exchange generating 2 transplantations. DA and
EADA both select µ2—a three-way exchange leading to 3 transplantations.

1 2 3
µ1 b a c
µ2 b c a

For the other direction, consider a kidney-exchange problem with four agents.
Let (P,�) as follows:

P1 P2 P3 P4 �a �b �c �d
b a b b 1 2 3 4

a c d c
... 4

...
...

...
...

...
... 3

1

TTC selects ν1 generating 4 transplantations. EADA selects ν2 generating 3
transplantations only. Since EADA Pareto dominates DA, DA generates no more
than 3 transplantations as well.

1 2 3 4
ν1 b a d c
ν2 a c d b
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Appendix A Omitted Proofs

A.1 Proof of Theorem 2

Here, we show that the EADA matching is t-justified-envy minimal in the set
of Pareto-efficient matchings. For completeness, Appendix B contains a nearly
identical proof for p-justified-envy minimality.

Lemma 2. Fix an allocation problem. If µ and µ′ are Pareto efficient, and µ′ has
less t-justified envy than µ, then there exists (i, j, µ(j)) ∈ JEµ such that µ′(i) =

µ(j).

Proof. Toward contradiction, suppose this is not the case, i.e., if (i, j, µ(j)) ∈ JEµ,
then µ′(i) 6= µ(j). Since µ′ has less t-justified envy than µ, there exists t-justified
envy (i, j, µ(j)) such that (i, j, µ(j)) ∈ JEµ and (i, j, µ(j)) /∈ JEµ′ . Thus, one of
the following cases must occur.

Case 1: µ′(i)Piµ(i). First, Pareto efficiency of µ implies µ′(i) 6= i, and
µ′(i) fills its capacity at µ. Hence, since µ′ assigns i to µ′(i), there must exist
agent k1 ∈ I such that µ(k1) = µ′(i) and µ′(k1) 6= µ′(i). Second, note that µ′(i)
must be filled with agents with higher priority than i at µ. Otherwise, there
is an agent k such that (i, k, µ′(i)) ∈ JEµ, in contradiction to the assumption
that µ′ has less t-justified envy than µ. So, k1 �µ′(i) i. Third, since JEµ′ (
JEµ and (k1, i, µ

′(i)) /∈ JEµ, (k1, i, µ′(i)) /∈ JEµ′ . Hence, µ′(k1)Pk1µ′(i). By the
same argument, there exists agent k2 such that µ(k2) = µ′(k1), k2 �µ′(k1) k1, and
µ′(k2)Pk2µ(k1). Iterating the argument, we get a sequence of agents that strictly
prefer each others’ allocation under µ. Since I is finite, this sequence must contain
a cycle, contradicting Pareto efficiency of µ.

Case 2: µ(i)Riµ
′(i) and µ′(j)Pjµ(j). This case is identical to Case 1 except

for i being replaced with j in the argument.
Case 3: µ(i)Riµ

′(i) and µ(j)Pjµ
′(j). By Pareto efficiency of µ′, µ(j) must

be full at µ′. So, there exists k1 ∈ I \{j} such that µ(k1) 6= µ(j) and µ′(k1) = µ(j).

Since there does not exist new t-justified envy (i, k1, µ(j)) at µ′, we must have
k1 �µ(j) i and thus k1 �µ(j) j. Moreover, if µ(j)Pk1µ(k1), then (k1, j, µ(j)) ∈ JEµ,
so we cannot assign k1 to µ(j) at µ′ since it contradicts the assumption on µ′.
We must have µ(k1)Pk1µ(j). Note that µ(k1) must be full at µ′ since µ′ is Pareto
efficient. So, there exists new agent k2 ∈ I \ {j, k1} such that µ(k2)Pk2µ(k1) and
µ′(k2) = µ(k1). Iterating this argument leads to a cycle that contradicts the Pareto
efficiency of µ′.
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We now turn to proving Theorem 2. Throughout the proof, let R be the last
round of the SEADA algorithm and αr be a matching resulting from r-th round
of the SEADA algorithm for r = 0, 1, 2, . . . , R.

Towards contradiction, assume that there exists an allocation problem such
that the EADA matching is not t-justified-envy minimal among Pareto-efficient
matchings. Then there is another Pareto-efficient matching, β, has less t-justified
envy than the EADA matching, αR. By Lemma 2, there exists (i, j, αR(j)) ∈ JEαR

such that β(i) = αR(j).
Let r ∈ {0, 1, 2, . . . , R} be the round of SEADA in which i is removed. First,

we claim that there exists k1 ∈ I \ {i} such that αr(k1) = β(i) and β(k1)Pk1β(i).
Since i is rejected from β(i) in the r-th round DA algorithm, β(i) is full in the
r-th round DA algorithm. If all agents whose assignment under αr is β(i) stay
in the same object at β, there is no copy for i. Therefore, there must exist an
agent k1 ∈ I \ {i} such that αr(k1) = β(i) and β(k1) 6= β(i). Note that k1 �β(i) i,
and (k1, i, β(i)) /∈ JEαR since Lemma 2 of Tang and Yu (2014) guarantees that
αR(k1)Rk1α

r(k1) = β(i). Since there is no new t-justified envy at β, we have
β(k1)Pk1β(i).

Now, we claim that there exists k2 ∈ I \ {i, k1} such that αr(k2) = β(k1) and
β(k2)Pk2β(k1). By the same reasoning as above, we can conclude that there exists
k2 ∈ I \ {k1} such that αr(k2) = β(k1) and β(k2)Pk2β(k1). Now we want to show
that k2 6= i. Note that i was assigned to the underdemanded object in the r-th
round DA algorithm, and k2 was not. Hence, they cannot be the same.

Next, we claim that there exists k3 ∈ I \{i, k1, k2} such that αr(k3) = β(k2) and
β(k3)Pk3β(k2). By the same reasoning as above, we can conclude that there exists
k3 ∈ I \{i, k2} such that αr(k3) = β(k2) and β(k3)Pk3β(k2). Now we want to show
that we can find k3 6= k1. Suppose that β(k2) = αr(k1). Then we are additionally
assigning two agents, i and k2, to αr(k1) at β. Therefore, there must be another
agent k3 other than k1 such that αr(k3) = β(k2) and β(k3)Pk3β(k2). Therefore,
finally, we have that there exists k3 ∈ I \ {i, k1, k2} such that αr(k3) = β(k2) and
β(k3)Pk3β(k2).

To have β(k3)Pk3αr(k3), there must exist a new agent k4 ∈ I \ {i, k1, k2, k3}
with the same conditions. The argument for the existence of k4 is nearly identical
to k3. By iterating the argument, we can construct a sequence of distinct agents
{k1, k2, k3, . . .} such that β(kl) = αr(kl+1)Pklα

r(kl) for l = 1, 2, 3, . . . . Since |I| <
∞, this sequence must contain a cycle, contradicting Pareto efficiency of αR. �
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A.2 Proof of Proposition 3

Proof of Proposition 3. The proof resembles the proof of Proposition 1 in Kesten
(2010) except that we consider special kidney-exchange problems. If a mechanism
is t-justified-envy (p-justified-envy) minimal in ΦPE, then it must select a Pareto-
efficient and fair matching whenever one exists. Therefore, it suffices to show that
a Pareto-efficient and strategyproof mechanism cannot satisfy this property even
if we restrict allocation problems to special kidney-exchange problems.

Consider the following example. There are three agents and three objects with
the capacity of 1. Let (P,�) be as follows:

P1 P2 P3 �a �b �c
a a c 3 2 1
b b a 1 3 2
c c b 2 1 3
1 2 3

The priorities � are consistent with each agent owning a single object (agent
1 owns c, agent 2 owns b, and agent 3 owns a). Fix (I, S, q, o,�) throughout the
proof. Suppose that a mechanism ϕ is t-justified-envy (p-justified-envy) minimal in
ΦPE, and strategyproof. For this allocation problem, ϕ must select the matching
µ1, which is the unique Pareto-efficient and fair matching (it can be computed
using DA).

1 2 3
µ1 a b c

.

Suppose that agent 2 reports P ′2 : a− c− b− 2. By efficiency agent 2 must be
assigned by ϕ, and by strategyproofness she is not assigned to a. If ϕ assigns her
to c under the profile (P1, P

′
2, P3), then by Pareto efficiency, agents 1 and 3 are

assigned to a and b respectively. Then, however, in the problem (P1, P
′
2, P3), agent

3 can benefit by misreporting her preferences as P ′3 : a − · · · since ϕ must select
the unique Pareto-efficient and fair matching µ2 for (P1, P

′
2, P

′
3):

1 2 3
µ2 b c a

Suppose ϕ assigns agent 2 to b under (P1, P
′
2, P3). Then 2 can benefit by

misreporting her preferences as P ′′2 : c − · · · in the problem (P1, P
′
2, P3) since ϕ

must select the unique Pareto-efficient and fair matching µ2 for (P1, P
′′
2 , P3).
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A.3 Proofs from Section 6

Proof of Proposition 4. First, note that any mechanisms in the priority-adjusted
TTC class is strategyproof. Thus, by Proposition 3, such mechanism cannot be
t-justified-envy (p-justified-envy) minimal in ΦPE, even when restricting attention
to kidney-exchange problems. Furthermore, since C&T, FC&T, AC&T, ETTC
and TTC are equivalent in one-to-one allocation problems, they too are not t-
justified-envy (p-justified-envy) minimal in ΦPE.

Next, consider the allocation problem where I = {1, 2, 3, 4, 5}, S = {a, b, c, d, e},
each object has capacity of 1 and is owned by a different agent, and (P,�) is as
follows:

P1 P2 P3 P4 P5 �a �b �c �d �e
a d a d e 2 1 3 5 4

b b d b d 3 4
... 2 5

... a c e
... 1 2 3

...
...

...
...

...
... 4

...

Both DA+TTC and CPDA+TTC select the matching µ1, for which JEµ1 =

{(2, 4, d), (3, 1, a), (3, 4, d)}, and ĴE
µ1

= {(2, d), (3, a), (3, d)}. However, µ2 is also

Pareto efficient with JEµ2 = {(3, 1, a)} ( JEµ1 , and ĴE
µ2

= {(3, a)} ( ĴE
µ1

.
Thus, both mechanisms are not t-justified-envy (p-justified-envy) minimal in ΦPE.

1 2 3 4 5
µ1 a b c d e
µ2 a d c b e

Finally, consider the allocation problem where I = {1, 2, 3}, S = {a, b, c}, each
object has capacity of 1 and owned by each different agent, and (P,�) is as follows:

P1 P2 P3 �a �b �c
a b a 1 3 2

b a b 3 2
...

c c c 2 1
1 2 3

B and AB select the matching µ3 with JEµ3 = {(3, 2, b)}, and ĴE
µ3

= {(3, b)}.
However, the matching µ4 is Pareto efficient and fair. Thus, both mechanisms are
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not t-justified-envy (p-justified-envy) minimal in ΦPE.

1 2 3
µ3 a b c
µ4 a c b

Proof of Proposition 5. To prove a similar result, the working paper version of Ab-
dulkadiroğlu et al. (2020) constructs Pareto-efficient and strategyproof mechanisms
that select the same matchings as priority-adjusted TTC, C&T, FC&T, and ETTC
respectively except for some allocation problems. For these allocation problems,
the mechanisms they constructed do not violate individual rationality, and they
induce no justified envy while priority-adjusted TTC, C&T, FC&T, and ETTC
do. Thus, these mechanisms are individually rational and they induce less p- and
t-justified envy than priority-adjusted TTC, C&T, FC&T and ETTC respectively,
which completes the proof.

Proof of Proposition 6. Examples where these mechanisms create less justified-
envy than TTC are given in Morrill (2015) and Hakimov and Kesten (2018).
For the other direction, consider the allocation problem where I = {1, 2, 3, 4},
S = {a, b, c, d}, qa = qc = qd = 1 and qb = 2, objects are publicly owned, and
(P,�) is as follows:

P1 P2 P3 P4 �a �b �c �d
a b a c 2 1 3 1

c
... c d 4 2 1

...

d
...

... 1
... 4

... 3
...

TTC yields the fair matching µ1. AC&T, C&T, FC&T, and ETTC all select
matching µ2 with JEµ2 = {(1, 3, a), (1, 4, c)}, and ĴE

µ2

= {(1, a), (1, c)}, complet-
ing the proof.

1 2 3 4
µ1 a b c d
µ2 d b a c
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Appendix B Additional materials

B.1 Proof of Theorem 2 with respect to p-justified-envy

Minimality19

Lemma 3. Fix an allocation problem. If µ and µ′ are Pareto efficient, and µ′ has
less p-justified envy than µ, there exists (i, s) ∈ ĴE

µ
such that µ′(i) = s.

Proof. Toward contradiction, suppose this is not the case, i.e., if (i, s) ∈ ĴE
µ
, then

µ′(i) 6= s. Since µ′ has less p-justified envy than µ, there exists p-justified envy

(i, s) such that (i, s) ∈ ĴE
µ
and (i, s) /∈ ĴE

µ′

. Thus, one of the following cases
must occur.

Case 1: µ′(i)Piµ(i). First, Pareto efficiency of µ implies µ′(i) 6= i, and µ′(i)
fills its capacity at µ. Hence, since µ′ assigns i to µ′(i) at µ′, there must exist agent
k1 ∈ I such that µ(k1) = µ′(i) and µ′(k1) 6= µ′(i). Second, note that µ′(i) must
be filled with agents with higher priority than i at µ. Otherwise, (i, µ′(i)) ∈ ĴE

µ
,

in contradiction to the assumption that µ′ has less p-justified envy than µ. So,
k1 �µ′(i) i. Third, since ĴE

µ′

( ĴE
µ
and (k1, µ

′(i)) /∈ ĴE
µ
, (k1, µ′(i)) /∈ ĴE

µ′

.
Hence, µ′(k1)Pk1µ′(i). By the same argument, there exists agent k2 such that
µ(k2) = µ′(k1), k2 �µ′(k1) k1, and µ′(k2)Pk2µ(k1). Iterating the argument, we get
a sequence of agents that strictly prefer each others’ allocation under µ. Since I is
finite, this sequence must contain a cycle, contradicting Pareto efficiency of µ.

Case 2: µ(i)Riµ
′(i) and µ′(j)Pjµ(j). This case is identical to Case 1 except

for i being replaced with j in the argument.
Case 3: µ(i)Riµ

′(i) and µ(j)Pjµ
′(j). By Pareto efficiency of µ′, s must be

full at µ′. So, there exists agent k1 ∈ I \ {j} such that µ(k1) 6= s and µ′(k1) = s.

Since (i, s) /∈ ĴE
µ′

, we must have k1 �s i and thus k1 �s j. Moreover, if sPk1µ(k1),
then (k1, s) ∈ JEµ, so we cannot assign k1 to s at µ′ since it contradicts the
assumption on µ′. We must have µ(k1)Pk1s. Note that µ(k1) must be full at µ′

since µ′ is Pareto efficient. So, there exists new agent k2 ∈ I \ {j, k1} such that
19For the case of p-justified envy, one can use the characterization results of Tang and Zhang

(2020) for a shorter proof. Tang and Zhang (2020) show that a mechanism Pareto dominates
any mechanism with fewer blocking pairs if and only if it coincides with the results of EADA
(potentially with different, profile specific, sets of consenters). Since EADA is Pareto efficient
only with full consent (the case described in this paper), and since efficient mechanisms are non-
wasteful, this implies that EADA (with full consent) is p-justified-envy minimal in the class of
Pareto-efficient mechanisms. This holds true as otherwise another Pareto-efficient mechanism
would have less p-justified envy, but this would mean that it has fewer blocking pairs and so that
it is Pareto dominated by EADA, a contradiction to the other mechanism’s optimality.
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µ(k2) 6= µ(k1) and µ′(k2) = µ(k1). Iterating this argument leads to a cycle that
contradicts the Pareto efficiency of µ′. �

We now turn to proving that the EADA matching is p-justified-envy minimal
among Pareto-efficient matchings. Throughout the proof, let R be the last round
of the SEADA algorithm and αr be a matching resulting from r-th round of the
SEADA algorithm where r = 0, 1, 2, . . . , R.

Towards contradiction, assume that the EADA matching is not p-justified-envy
minimal in the set of Pareto-efficient matchings. Then there is another Pareto-
efficient matching, β, has less p-justified envy than the EADA matching, αR. By
Lemma 3, there exists (i, s) ∈ JEαR such that β(i) = s.

Let r ∈ {0, 1, 2, . . . , R} be the round of SEADA in which i is removed. First,
we claim that there exists k1 ∈ I \ {i} such that αr(k1) = β(i) and β(k1)Pk1β(i).
Since i is rejected from β(i) in the r-th round DA algorithm, β(i) is full in the
r-th round DA algorithm. If all agents whose assignment under αr is β(i) stay
in the same object at β, there is no copy for i. Therefore, there must exist an
agent k1 ∈ I \ {i} such that αr(k1) = β(i) and β(k1) 6= β(i). Note that k1 �β(i) i,

and (k1, β(i)) /∈ ĴE
αR

since Lemma 2 of Tang and Yu (2014) guarantees that
αR(k1)Rk1α

r(k1) = β(i). Since there is no new p-justified envy at β, we have
β(k1)Pk1β(i).

Now, we claim that there exists k2 ∈ I \ {i, k1} such that αr(k2) = β(k1) and
β(k2)Pk2β(k1). By the same reasoning as above we can conclude that there exists
k2 ∈ I \ {k1} such that αr(k2) = β(k1) and β(k2)Pk2β(k1). Now we want to show
that k2 6= i. Note that i was assigned to the underdemanded object in the r-th
round DA algorithm, and k2 was not. Hence, they cannot be the same.

Next, we claim that there exists k3 ∈ I \{i, k1, k2} such that αr(k3) = β(k2) and
β(k3)Pk3β(k2). By the same reasoning as above, we can conclude that there exists
k3 ∈ I \{i, k2} such that αr(k3) = β(k2) and β(k3)Pk3β(k2). Now we want to show
that we can find k3 6= k1. Suppose that β(k2) = αr(k1). Then we are additionally
assigning two agents, i and k2, to αr(k1) at β. Therefore, there must be another
agent k3 other than k1 such that αr(k3) = β(k2) and β(k3)Pk3β(k2). Therefore,
finally, we have that there exists k3 ∈ I \ {i, k1, k2} such that αr(k3) = β(k2) and
β(k3)Pk3β(k2).

To have β(k3)Pk3αr(k3), there must exist a new agent k4 ∈ I\{i, k1, k2, k3} with
the same conditions. The argument for the existence of k4 is nearly identical to the
argument for the existence of k3. And by iterating this argument, we can construct
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a sequence of distinct agents {k1, k2, k3, . . .} such that β(kl) = αr(kl+1)Pklα
r(kl)

for l = 1, 2, 3, . . .. Since |I| <∞, this sequence must contain a cycle, contradicting
Pareto efficiency of αR.

B.2 TTC Variants

Clinch and Trade (Morrill, 2015)

Step 0 For each object s, assign a counter cs and initialize it to cs = qs.

Step 1 1.a Agent i is immediately assigned to object s if her first-choice among
options that were not removed is s, and she has the cs highest priority
at s. We call this clinching an object. In this case, remove i and set
cs = cs − 1. If cs = 0, then remove s. If i’s first choice among options
that were not removed is herself, remove i and leave her unassigned. We
call this self-clinching. Repeat clinching and self-clinching procedures
until no agent can.

1.b Remaining agents and objects point to their first-choices among options
that were not removed. Every agent in a cycle (defined in the TTC
algorithm) is removed with a copy of the object she points to. For each
object s in the cycle, set cs = cs − 1. If cs = 0, remove s. Proceed to
the next step.

In general, at

Step k, k ≥ 1 k.a If agent i pointed to object s in Step k − 1 and s is not
removed yet, let i keep pointing to s. If s is removed, i joins clinching
and self-clinching procedures. Only for these agents, repeat clinching
and self-clinching procedures until no agent can.

k.b Remaining agents and objects point to their first-choices among options
that were not removed. Every agent in a cycle is removed with a copy of
the object she points to. For each object s in the cycle, set cs = cs − 1.
If cs = 0, remove s. Proceed to the next step.

The algorithm terminates when all agents are removed from the allocation
problem. We call the mechanism that associates to every allocation problem the
outcome of the above algorithm C&T. Morrill (2015) shows that this mechanism
is Pareto efficient and strategyproof.
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Always Clinch and Trade (Morrill, 2015)
Note that the C&T algorithm allows agent i to clinch object s only before

she points to it. If we allow agent i to clinch to object s whenever her first-
choice among available objects is s and she has the cs highest priority at s among
remaining agents, then it is called the Always Clinch and Trade (AC&T) algorithm.
We call the mechanism that corresponds to the AC&T algorithm AC&T. Morrill
(2015) showed that this mechanism is Pareto efficient but not strategyproof.

First Clinch and Trade (Morrill, 2015)
The last version Morrill (2015) introduced is the First Clinch and Trade (FC&T)

algorithm. The main difference between the C&T algorithm and the FC&T al-
gorithm is that we do not update the set of agents who can clinch objects in the
FC&T algorithm. Recall that this set changes in the C&T algorithm as steps go
on. The FC&T algorithm runs as follows:

Step 0 For each object s, assign a counter cs and initialize it to cs = qs.

Step k, k ≥ 1 If cs = 0, remove object s. If agent i’s first-choice among options
that were not removed is herself, remove i and leave her unassigned. Remain-
ing agents and objects point to their first-choice among remaining options. If
i is pointing at s and she initially had the qs highest priority at s, then assign
i to s immediately, remove i, and set cs = cs − 1. For the remaining agents
and objects, every agent in a cycle is removed with a copy of the object she
points to. For each object s in the cycle, set cs = cs− 1. Proceed to the next
step.

The algorithm terminates when all agents are removed from the allocation
problem. We call the mechanism that corresponds to the above algorithm FC&T.
Morrill (2015) shows that this mechanism is also Pareto efficient and strategyproof.

Equitable TTC (Hakimov and Kesten, 2018)

Step 0 Create agent-object pairs by letting each object s ∈ S assign its qs copies
to agents based on its priority order. For agent i ∈ I, if her first-choice is
herself, remove all of pairs including her and leave her unassigned. The copies
paired with her remain to inherited. Each remaining agent-object pair (i, s)
points to the agent-object pair (i′, s′) if (1) s′ is i’s first-choice among paired
objects, and (2) i′ has the highest priority of s among agents paired with s′.
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If i is paired with her first-choice object, then let all pairs including her point
to that pair. There must exist at least one cycle (including self-cycles). For
each cycle, remove all agent-object pairs in the cycle, assigning each agent to
the object that is in the pair she points to. Note that an agent might appear
at multiple pairs in the same or different cycles. In that case, assign i to her
best choice and the other copies of that object remain to be inherited. For
each pair (i, s) in a cycle, the copies paired with i in other pairs that do not
participate in a cycle remain to be inherited as well.

Step k, k ≥ 1 Inheritance If object s has copies that remain to be inherited
from Step k−1 and there are no existing pairs of s from Step k−1, i.e.,
all pairs of s are removed in Step k − 1, then s assigns its copies that
remain to be inherited to remaining agents following its priority order
and create new pairs.

Pointing and trading For agent i, if her first-choice is herself, remove all
of pairs including her and leave her unassigned. The copies paired with
her remain to inherited. Each remaining agent-object pair (i, s) points
to the agent-object pair (i′, s′) if (1) s′ is i’s first-choice among paired
objects, and (2) i′ has the highest priority of s among agents paired with
s′. If i is paired with her first-choice object, then let all pairs including
her point to that pair. There must exist at least one cycle (including
self-cycles). For each cycle, remove all agent-object pairs in the cycle,
assigning each agent to the object that is in the pair she points to. Note
that an agent might appear at multiple pairs in the same or different
cycles. In that case, assign i to her best choice and the other copies of
that object remain to be inherited. For each pair (i, s) in a cycle, the
copies paired with i in other pairs that do not participate in a cycle
remain to be inherited as well.

The algorithm terminates when all agents are removed. We call the mechanism
that corresponds to the above algorithm ETTC. Hakimov and Kesten (2018) shows
that this mechanism is also Pareto efficient and strategyproof.

B.3 The Boston Mechanism and its Variant

The Boston Mechanism (Abdulkadiroğlu and Sönmez, 2003)
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Step 1 Each agent i proposes to the first-choice. If i’s first-choice is herself, then
she is removed and left unassigned. Each object s accepts up to qs applicants
following its priority order, and rejects the rest.

In general, at

Step k, k ≥ 2 Each agent i who has not been accepted nor removed proposes
to the k-th choice. If i’s k-th choice is herself, then she is removed and left
unassigned. Each object s accepts agents up to the number of remaining
copies following its priority order, and rejects the rest.

The algorithm terminates when there are no more agents/objects, and agents
are assigned to the objects that accepted them. We call the mechanism that
corresponds to the above algorithm the Boston (B) mechanism.

The Adaptive Boston Mechanism (Mennle and Seuken, 2014)

Step 1 Each agent i proposes to the first-choice. If i’s first-choice is herself, then
she is removed and left unassigned. Each object s accepts up to qs applicants
following its priority order, and rejects the rest.

In general, at

Step k, k ≥ 2 Each agent i who has not been accepted nor removed proposes to
the most preferred choice with available slots (including proposing to herself).
If she proposes to herself, then she is removed and left unassigned. Each
object s accepts agents up to the number of remaining slots following its
priority order, and rejects the rest.

The algorithm terminates when there are no more agents/objects, and agents
are assigned to the objects that accepted them. We call the mechanism that
corresponds to the above algorithm the Adaptive Boston (AB) mechanism.

B.4 Independence of Essential Stability (Troyan et al., 2020)

Troyan et al. (2020) provide another justification for EADA. They define the reas-
signment chain initiated by p-justified envy (i, s). In this chain, if agent i claims
a copy of object s, then an agent with the lowest priority at object s becomes
unassigned. And then she claims the best object among objects where she has
justified envy. If repeating this process cycles back to the agent who initiated the
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chain, they say that the mechanism is essentially stable. Theorem 1 of Troyan
et al. (2020) states that EADA is essentially stable.

While the argument of Troyan et al. (2020) may appear to be similar to our
proof of Theorem 2, in the sense that assigning i to s yields undesirable conse-
quences in both cases, the following two examples show that a Pareto-efficient
matching can be t-justified-envy and p-justified-envy minimal in MPE but not
essentially stable, and that the opposite is also possible.

Example (A Pareto-efficient matching which is t-justified-envy and p-justified-envy
minimal inMPE but not essentially stable). Recall the example from the proof of
Proposition 2 and µ3 for this allocation problem.

P1 P2 P3 �a �b �c
b a a 1 3 2
a c b 2 1 3
c b c 3 2 1
1 2 3

We know that µ3 is t-justified-envy and p-justified-envy minimal inMPE.

1 2 3
µ3 b a c

However, it is not essentially stable. If agent 3 claims object b, and then agent
1 claims object a, then agent 2 claims object c. Hence, the chain does not come
back to 3.

Example (A Pareto-efficient matching which is essentially stable but neither t-jus-
tified-envy nor p-justified-envy minimal inMPE). Suppose that I = {1, 2, 3, 4} and
S = {a, b, c, d}. Each object has capacity of 1. (P,�) is as follows:

P1 P2 P3 P4 �a �b �c �d
b b c a 1 3 2 4
a d b d 4 1 3 2
... c

...
...

... 2
...

...
...

...

We can assume any ownership structure that is consistent with �. Note that
matching µ1 is Pareto efficient and essentially stable.
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1 2 3 4
µ1 a b c d

The only t-justified envy is (1, 2, b) and the only p-justified envy is (1, b). If
agent 1 claims object b, then agent 2 claims object c. Then agent 3 claims b, so
the chain cycles back to agent 1. However, matching µ2 is Pareto efficient and has
no t-justified envy (p-justified envy).

1 2 3 4
µ2 b d c a

Hence, µ1 is not t-justified-envy (p-justified-envy) minimal in MPE for this
allocation problem.
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